
Developing Modeling Capabilities for Electron and Laser Beam Welding to Enable In-Space Manufacturing and Repair

National Aeronautics and Space Administration

Ariella Blackman | EM32 OSTEM Intern | Summer 2025 **NASA Marshall Space Flight Center**

Overview:

In-Space Manufacturing

- In-space manufacturing can be used to assemble and repair complex structures
- Not limited by launch requirements:
 - Volume
 - Mass
 - Forces
- Likely a requirement for future space exploration

Electron/Laser Beam Welding

- Use high energy density electron/laser beam
- Melts/vaporizes base material to produce a weld

Benefits

- Functions well in vacuum
- Minimal consumable mass reduces launch costs
- High precision welds

Challenges

- Require high confidence and understanding to utilize for in-space manufacturing
- Processes and properties behave differently in space vs. terrestrial environments
- Limited in-space welding experience
- Expensive and challenging to conduct in-space testing

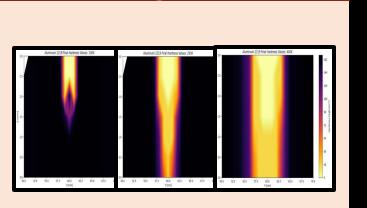
It is important to develop robust, accurate models of in-space electron and laser beam welding to improve understanding of these processes, enable more efficient testing, and develop in-space manufacturing capabilities.

Skylab Welding Model:

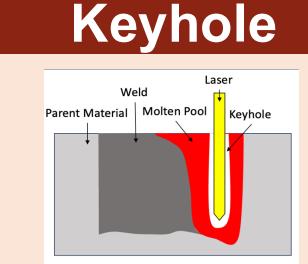
Background:

- 1972 electron beam welding (EBW) study conducted on Skylab
- First U.S. in-space welding experiment
- Three disks (Aluminum 2219, 304 Stainless Steel, Tantalum) with gradually changing thicknesses

Challenges:


- Skylab is one of few in-space welding experiments
- Important for informing future in-space welding modeling efforts
- Not modeled sufficiently with modern technology

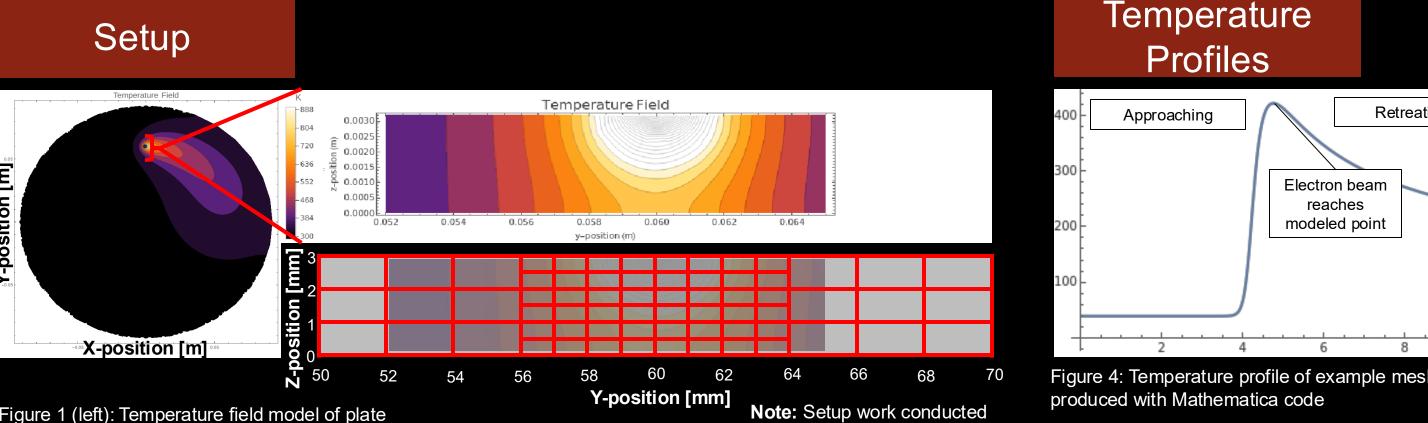
Objectives:


- Conduct thermal and hardness modeling of heat affected zone
- Compare model to data to ensure accuracy
- Expand to further cases to better understand in-space **EBW**

Future Goals:

Skylab

Material properties in heat affected zone



Keyhole geometry

Additional Models

Additional weld properties and variables

Project Work:

by MSFC Skylab model team

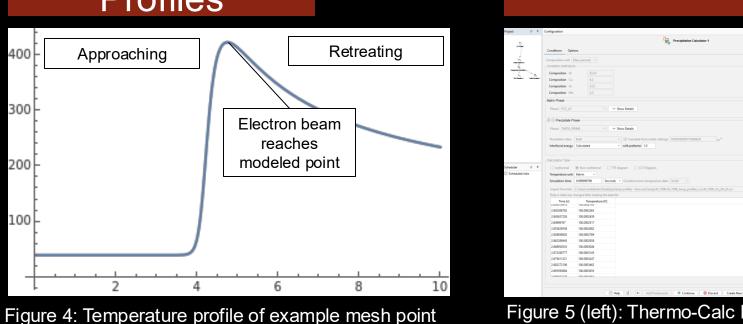
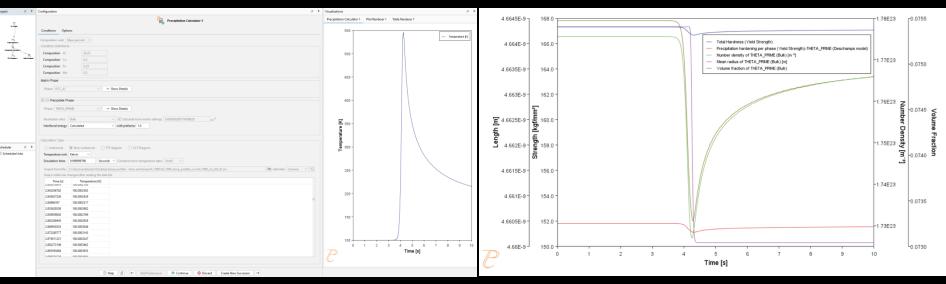

Mathematica to model temperature field on plate

Figure 2 (top right): Temperature field model of selected cross section

Cross section of plate selected

Results

- Mesh created within cross section defines points for hardness model Aluminum 2219 at three initial temperatures (100K, 293K, 400K)


Temperature profile with

Crabtree (internship mentor)

- moving heat source Repeated for all mesh points
- Exclude fully melted points

Note: Temperature profile work conducted by Dr. Ellis

Thermo-Calc

- Figure 6 (right): Material property plot for example modeling case. Plotted values include total hardness, precipitation hardening per phase, number density of θ' , mean radius of θ' , and volume fraction of θ'
- Thermo-Calc PRISMA precipitation modeling for 234 points
- Temperature profiles converted to csv files Simulation time of 10 seconds

depth

Resulting plot of material properties over time

In-Space Welding Simulations

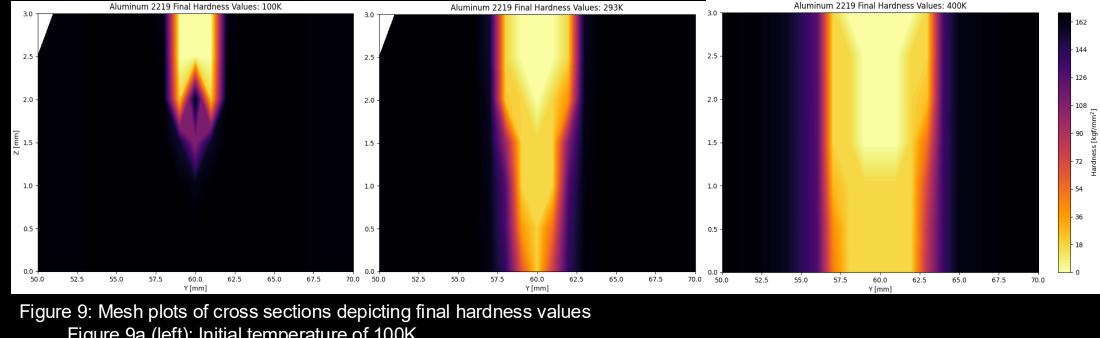

- Develop Skylab and keyhole models and combine, along with other models, into more complete welding simulations
- Keyhole geometry to better understand heat affected zone geometry
- Material properties in heat affected zone to better understand properties around a keyhole
- Will allow for more complete understanding of in-space welding properties, and thus capabilities

Figure 7 (left): Thermo-Calc table depicting time and hardness points for example case

Figure 8 (right): Excel sheet tracking hardness results for all cases

- Total hardness table to obtain final hardness at each point
- Tracked results in Excel
- Noted model inputs and incomplete simulations (predicted in weld pool)

Hardness Plots

- Figure 9a (left): Initial temperature of 100K Figure 9b (center): Initial temperature of 293K Figure 9c (left): Initial temperature of 400K
- Used Python to produce mesh plots of final hardness values
- Have results that can be compared with data
- Clear variation in heat affected zones indicates necessity of modeling in-space welding environments

Future Work

- **Compare** to Skylab data and other modeling techniques
- Repeat for **other** materials
- **Expand model** to be applicable to further cases and inform inspace welding experimentation

Impacts:

Improves understanding of in-space welding

Facilitates faster, cheaper, and more effective

development of in-space manufacturing processes

space exploration

Conclusion:

Future long distance and long duration human spaceflight relies on developed inspace manufacturing and repair processes.

Current modeling work is necessary to enable this development.

Acknowledgements:

Dr. Ellis Crabtree, Dr. Jeffrey Sowards, and Dr. Christopher Protz

Laser Keyhole Depth Model:

Parent Material | Molten Pool | Keyhole

Background:

Laser beam welding (LBW) can create a keyhole

Literature

Review

Initial understanding of LBW

impact keyhole depth

Understanding of parameters that

Keyhole depth changes with atmospheric pressure Figure 10: Laser keyhole welding diagram

Challenges:

- Different keyhole formation mechanisms in space: pressure, gravity, convection, buoyancy, etc.
- Many current models are not necessarily applicable to in-space applications
- Earth-based assumptions
- Use terrestrial data

Project Work:

Analyzing **Previous Models**

- Fabbro et al. (2016) model: keyhole depth in reduced ambient pressure
- Identified data-based coefficients Compared to prior MSFC model iterations to identify inaccuracies
- MSFC model iterations
 - Re-derived equations to gain understanding and identify errors

Model Development

unknown values

- Modeled keyhole as a nozzle with force and energy balance
- Incorporated pipe flow equations to include pressure drop Defined relevant equations, known vs.
 - Identified variables requiring further research and model incorporation

Future Work

Apply model to in-space LBW applications

Objectives:

Develop a purely physics-based model of keyhole

- Continue integrating physics components to create full model
- Compare results to existing models and experimental data
- analysis Use model to **inform** in-space welding

Use work to set depth in keyhole FEA

experimentation

relevant parameters

Implications of space environments on